Integrated assessment of CMIP5 simulations in terms of climate classification (Session 3, Poster 1)

Michal Belda, Tomáš Halenka, Jaroslava Kalvová and Eva Holtanová

Charles University in Prague, Faculty of Mathematics and Physics, Department of Atmospheric Physics

- Validation of CMIP5 model results in representing vegetation zones according to Köppen-Trewartha climate classification
- Evaluation of future projections for RCP4.5 and RCP8.5 scenarios
- Evaluation of Euro-CORDEX historical and projection runs forced by CMIP5 models using Köppen-Trewartha climate classification
- Problems capturing rainforest type *Ar*, underestimation of desert type *BW*, overestimation of boreal climate type *E*
- Higher resolution != better representation of climate zones
- Future changes often smaller than model errors
- Ensemble spread quite large

Sources of multi-decadal predictability over the North Atlantic and Mediterranean region: the role of forcings.

by Alessio Bellucci (CMCC), A. Mariotti (NOAA), S. Gualdi (CMCC, INGV)

Multi-decadal SST variability in HISTORICAL CMIP5 simulations

HISTORICAL	HISTMISC Anthropog.	HISTMISC NoAA
NATURAL + ANTHROP.	ANTHROP. only	NATURA+L ANTHROP. NO Ant. Aer.

The role of anthropogenic forcings on the mid-20C "hiatus"

Towards a limited-area climate ensemble prediction system for decadal forecasts

WCRP/EMBRACE Workshop on CMIP5 Model Analysis and Scientific Plans for CMIP6 – Jennifer Brauch 22/10/2015

Impact of permafrost relevant processes on hydrological change using MPI-ESM

Stefan Hagemann, Tanja Blome, Christian Beer and Altug Ekici

PAGE2

Climate indicators of the pace of change using CMIP5 projections

Yann Chavaillaz¹, Sylvie Joussaume¹, Sandrine Bony², Pascale Braconnot¹ and Robert Vautard¹

One of the main findings:

<u>Also on the poster</u>: doubling of the warming rate, intensification of the drying and moistening rates, expansion and stabilization of precipitation rate patterns, etc.

¹LSCE-IPSL, Gif-sur-Yvette, France ²LMD-IPSL, Paris, France

Sources of uncertainties in projections of potential marine

ecosystem stressors

T. L. Frölicher, K. B. Rodgers, C. Stock, W. W. L. Cheung

- Marine ecosystems are increasingly stressed by human-induced changes
- Ocean acidification, ocean warming, ocean deoxygenation and changes in primary production are of greatest concern
- Future projections of these marine ecosystem stressors are inherently uncertain

 \rightarrow uncertainty assessment is needed!

ENSO and tropical Pacific metrics for CMIP6

Eric Guilyardi (IPSL & NCAS/Climate) and Andrew Wittenberg (GFDL) On behalf of the CLIVAR Reseach Focus "ENSO in a changing climate"

- Despite 30 years of progress, ENSO continues to surprise us and challenge our assumptions - It remains a major unsolved climate puzzle
- It is the "elephant in the room" for regional impacts of climate change
- ENSO research very active field
 - diversity of events, extremes, role of atmosphere,...

Coupled GCMs are choice tools to understand ENSO

- ENSO simulation and prediction still suffer from long standing biases
- Little improvement from CMIP3 to CMIP5
- Beyond performance metrics, process-based metrics are required during model development phase
- Poster provides examples of the such metrics and how to develop their use in the community

Refs: Hajima et al. (2014) J. Clim; Arora et al. (2013) J. Clim.

Improving the Norwegian Earth System Model (NorESM) for CMIP6

Trond Iversen, MET Norway

NorESM belongs to a "family" of models based on the (NCAR) Community ESMs, where:

•The ocean model is replaced with an iso-pycnic coordinate version developed from MICOM;

•Ocean bio-geochemistry is based on HAMOCC (Hamburg Ocean Carbon Cycle Model);

•Own modules for aerosol life-cycling, physics, and interactions with cloud microphysics (CAM-Oslo);

•Adjusted processing of sea-ice and snow on sea-ice.

Six possible configurations of NorESM2 for CMIP6.								
N	lorESM2_	MH	_НН	_MM	_LM	_LME	_LMEC	
RESOLUTION	Atmosphere - Land	Mt 0.9x1.25 deg.	H: 0.23x0.31 deg.	Mt 0.9x1.25 deg.	L: 1.9x2.5 deg.	L: 1.9x2.5 deg.;	L: 1.9x2.5 deg.	
	Ocean - Sea- Ice	H: nominal 0.25 deg.	H: nominal 0.25 deg.	M: nominal 1 deg.	M: nominal 1 deg.	M: nominal 1 deg.	M: nominal 1 deg.	
	Greenhouse Gases (GHG)	Concentration- driven	Concentration- driven	Concentration- driven	Concentration- driven	E : E mission-driven	E : E mission-driven	
PROCE SSES	Aerosols	E mission-driven, Complex physics	Emission-driven, <i>Possibly:</i> Simplif. physics	Emission-driven, Complex physics	Emission-driven, Complex physics	Emission-driven, Complex physics	Emission-driven, Complex physics	
	Atmosph. Chemistry	Simplified;	Simplified;	Simplified;	Simplified;	Simplified	C: Complex	
	Ocean Bio- GeoChem.	OFF	OFF	OFF	OFF	E: ON	E: ON	
CM CM	IIP-DECK & IP6 Historic	ALL	Only AMIP	OP TION AL: ALL if _MH fails	AMIP, Preind, Historic	ALL except AMIP	Only AMIP	
	MIPs	•AerChemMIP •CFMIP •RFMIP •D AMIP •O MIP •Sc enarioMIP •SIMIP	HighResMIP	OPTIONAL. If _MH fails: •AerChemMIP •CFMIP •RFMIP •DAMIP •OMIP •ScenarioMIP •SIMIP	AerChemMIP CFMIP DAMIP DCPP LS3MIP(?) LUMIP OMIP PMIP RFMIP ScenarioMIP VolMIP SIMIP	•C4MIP •LUMIP(?) • GeoMIP(?) •OMIP(?)	•AerChemMIP •VoIMIP	

Sst & ice, d=1deg

COMPLEMENTING THERMOSTERIC SEA-LEVEL RISE ESTIMATES

BY KATJA LORBACHER¹, ALEXANDER NAUELS¹ AND MALTE MEINSHAUSEN^{1,2}

1/ AUSTRALIAN-GERMAN CLIMATE AND ENERGY COLLEGE, 700 SWANSTON STREET, UNIVERSITY OF MELBOURNE, PARKVILLE 3010, VICTORIA, AUSTRALIA 2/ THE POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH, TELEGRAFENBERG A26, 14412 POTSDAM, GERMANY

MOTIVATION

- THERMOSTERIC SEA LEVEL RISE (THSLR) DEFINES THE EXPANSION OF SEAWATER CAUSED BY THE WORLD'S OCEANS WARMING. OVER THE LAST 50 YEARS, THSLR ACCOUNTS FOR 40% OF GLOBAL SEA LEVEL RISE.
- 2) DOWN TO THE PRESENT DAY, OBSERVED TH**SLR** ESTIMATES ARE SPARSE AND PRIMARILY AVAILABLE FOR THE UPPER OCEAN LAYERS DOWN TO **700** M.
- 3) ONLY A PART OF THE AVAILABLE CLIMATE MODEL DATA IS SUFFICIENTLY DIAGNOSED TO COMPLETE OUR QUANTITATIVE UNDERSTANDING OF TH**SLR**.

Model median percentage contribution to global mean thSLR for the entire water column from depths below 700 m (light grey) and below 2000 m (dark grey) for seven scenarios.

METHODS AND MODELS

I) COMPLEMENTING CMIP5 THSLR DATA SET

Calculation of the simulated thermal expansion over the entire ocean grid for CMIP5 models resulting in an extension of the available set of thSLR diagnostics (*zostoga*) from CMIP5 and depth-dependent time series.

- 2) COMPLEMENTING OBSERVATIONS Analysis of those model results in order to complement upper ocean layer observations.
- 3) ENABLE SURROGATE TECHNIQUES FOR LONG-TERM THSLR PROJECTIONS

Investigation of hemispheric averages and global averages of calibrated thSLR mimicking CMIP5 estimates to enable the development of surrogate techniques to project thSLR using vertical temperature profile and ocean heat uptake time series.

Atlantic Multidecadal Variability in a multi-model ensemble of CMIP5 simulations:

Irene Mavilia (1,2), Alessio Bellucci (1), Panos Athanasiadis (1), Silvio Gualdi (1,3), Rym Msadek (4), Yohan Ruprich-Robert (4)

(1) Euro-Mediterranean Center on Climate Change (CMCC), Bologna, Italy (irene.mavilia@cmcc.it), (2) Ca' Foscari University, Venice, Italy,

(3) Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy, (4) NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

Evidence of AMV non-stationarity: AMV autocorrelation for moving and overlapping 200-year-long time windows

AMV/AMOC correlation undergoes significant fluctuations with time

Equatorial Atlantic Ocean dynamics in a coupled ocean-atmosphere model simulation

Paulo Nobre, E. Giarolla, L. Siqueira, M. Bottino, M. Malagutti, V. Capistrano National Institute for Space Research – INPE - Brazil

- The development of the Brazilian earth system model (BESM) is a cooperative effort in Brazil, documented in Nobre et al. (2013).
- Bottino and Nobre (2015) investigated the cloud cover scheme, resulting in an improved version of the model;
- Giarolla et al. (2015) compared the ocean features over the equatorial Atlantic, simulated by BESM and seven other CMIP5 models.
- This work refers to Giarolla et al. (2015), also including in the comparisons the most recent BESM version, BESM2.5. Analyses are based in the last 30 years of 100-yr long simulations.

Ministério da Ciência, Tecnologia e Inovação

Reducing Uncertainty in Future Projections of the Northern Annular Mode

- Future projections of the NAM remain highly uncertain (Miller et al. 2006, Manzini et al. 2014)
 ⇒ large uncertainty in regional climate change (model formulation, well-resolved stratosphere?)
- Sigmond and Scinocca (2010; SS10): Sensitivity of the NAM response to GHG is primarily due to differences in the initial <u>climatological winds</u> upon which GHG forcing is applied in each model.

models with <u>stronger/weaker</u> climatological NH wintertime winds in a critical region of the lower stratosphere tend to have a more <u>positive/neutral</u> NAM response to increased GHG forcing

- SS10 have identified a planetary-wave mechanism to explain this sensitivity
- Recent analysis of the NAM response in CMIP3 and CMIP5 climate change simulations (Manzini et al. 2014) has provided support for the SS10 mechanism

<u>Uncertainty</u> in regional climate change associated with the NAM response <u>can be reduced</u> in CMIP6 <u>if present-</u> <u>day wind biases are reduced</u> in the critical region of the NH wintertime lower stratosphere.

John Scinocca, CCCma

Canada

Canadian Centre for Climate Modelling and Analysis Centre canadien de la modélisation et l'analyse climatique

Rapid cooling in the North Atlantic: a real eventuality or a sporadic model propensity?

Giovanni Sgubin, Didier Swingedouw and Sybren Drijfhout

Do we need coupled models to simulate anthropogenic climate change?

Jie He and Brian Soden University of Miami

Atmospheric models may be better tools for predicting anthropogenic climate change over land because:

- Coupling is not necessary to simulate ACC
- Coupling degrades mean climate state
- Atmospheric models have better climatologies
- Land is insensitive to pattern of SST changes
- Range of climate sensitivity unchanged in 40 years

Suggests a greater application of AGCMs or flux-adjusted CGCMs in CMIP6 for improving regional projections over land.

Increasing potential to biomass burning over Sumatra, Commercial Indonesia induced by anthropogenic tropical warming

R. Kartika Lestari¹, M. Watanabe¹, Y. Imada², H. Shiogama³, R. D. Field⁴, T. Takemura⁵ & M. Kimoto¹ ¹Atmosphere and Ocean Research Institute, the University of Tokyo; ²Meteorological Research Institute; ³National Institute for Environmental Studies; ⁴Columbia University; ⁵Kyushu University

Difference in 5mon-accumulated precipitation (shaded) in 1979–2008. (*With minus without anthropogenic warming*)

Change in 5mon-accumulated precipitation mean in October. Base period: 1951 – 2000

Changes In The Weddell Sea Warm Deep Water In Cmip5 Models - From The 20th Into The 21st C 10 Cmip-5 models I. Wainer & M. Tonelli

Results show freshening and warming of WDW for most models (although their physical representation of the water mass distri- bution in the Weddell Sea is remarkably different.)

The shallowing trend is consistent in all models (core depth can differ from 100 to 1000 m among models).

Ocean Downscaling of CMIP5 1990-2100 climate projections for the Arabian Gulf

How to translate the large-scale climate information from an Earth System Model (MPI) into regional/local ocean changes. Arabian Gulf as a case study because of its very high salinity.

Evaluation of seasonal and decadal predictions on regional and global scale

Deutscher Wetterdienst Wetter und Klima aus einer Hand

FREVA (www-miklip.dkrz.de) Freie University Evaluation System In context of

German research project for decadal predictions

In context of

Successful implementation of FREVA at DWD:

- Further developments for seasonal prediction
- Integration of observations and reanalysis for ocean parameters, especially satellite products

Workshop on CMIP5 Model Analysis and Scientific Plans for CMIP6

Understanding the Source of Uncertainty in Arctic Sea Ice Projections in CMIP5 – Toward Unanimous Projections

Shuting Yang, Perter L. Langen, Peter Thejll and Jens H. Christensen Danish Meteorological Institute (DMI), Denmark

Research questions:

- Given the large spread in models, how to obtain * reliable projections for the future Arctic sea ice evolution using climate model experiments?
- What is the condition for open-water Arctic Ocean?

The projected *D***SIA**

are tightly linked to

Tot modelled rglobal ΔT

Global Mean Annual T2M Anomaly (C Total Arctic Sea Ice Changes wrt 1986-2005

0